IJFEAT INTERNATIONAL JOURNAL FOR ENGINEERING APPLICATIONS AND TECHNOLOGY

TIME AND COST ANALYSIS OF PRECAST METHOD WITH RESPECT TO CONVENTIONAL METHOD

Mr. Devanshu S. Ahuja¹, Prof. Pranav K. Lende²

¹Student, Civil Engineering Department, G.H. Raisoni University, Amravati, Maharashtra, India, devanshuahuja98@gmail.com

²Professor, Civil Engineering Department, G.H. Raisoni University, Amravati, Maharashtra, India, pranav.lende@ghru.edu.in

Abstract

Housing, basic needs for everyone. Initially mud was used as part of construction. Ancient houses were built of mud and grass. The Romans were in the forefront of construction technology to explore the mixture of lime and stone to build a magnificent structure like the Pantheon which is still the world's largest and most durable concrete dam. The use of precast in construction is nothing new. The ancient Romans used mould to develop their amazing system of processes and canals. With the growing demand for housing, the need for automation and modernity the construction industry was taken over. In the current context, the invention and development of engineering and architecture has enabled the construction world to explore the neo-arena of precast technology. Design and development do not create anything new, but redefine what a modern approach is. The construction industry has pushed the boundaries of a load bearing structure and compliant with housing needs. This allows for reinforced concrete structures with concrete frames to make construction more reliable and faster. We can imagine the future with just the same construction of Lego toys. With Precast, we can think about stability, speed, durability, safety and a bright future for the construction industry.

Keywords: Precast Technology, high-end residential buildings, Inexpensive construction, staff reduction, rapid construction, controlled production conditions, quality improvement.

I. INTRODUCTION

Traditional building methods in India need to be developed with modern technology. Familiarity with modern tools and technologies can provide improved quality construction while using less resources such as time, cost, labor, building materials, etc. The use of precast concrete building technology regularly provides effective performance and improved quality over the past fifty years. Developing countries like India need it to fully meet the huge demand for housing, commercial buildings and infrastructure projects. The rapid growth of the urban population has created a huge demand for housing, infrastructure development, and real estate. Ernst & Young and FICCI submitted a report showing a 65% staff shortage by 2021 [1]. GOI has developed a "Housing for All" proposal under the Pradhan Mantri Awash Yojana (PMAY) program. To achieve the intended PMAY-2022, the use of precast technology not only improves the quality of construction but also reduces the duration of the project. It has been noted that the use of PCC is limited to the public sector mainly due to factors such as high initial investment rate, small number of qualified people, local needs, direct and horizontal barrier to module transport, lack of communication data set. in IS codes and precast module verification by BIS. The various components of pre-concrete construction require adequate and systematic planning and design to minimize production errors. The combination of different sections such as slab, beam, and columns requires specific details that help precast structure not only transfer loads but also function as monolithic systems. External precast modules need to be properly assembled to avoid any moisture and water leakage problems. The use of precast wall panels also gives us an additional thermal benefit.

II. LITERATURE REVIEW

- 1. P. Karthigai Priya, et al (2018) Most construction projects in India take place in the form of standard letter construction. But there is still a huge need for housing in India. Therefore construction work should be done internally very quickly. Nowadays precast concrete has been widely used in many housing and commercial projects. Because the benefits of precast concrete. It has high durability, high thermal properties and is very easy to handle and more. And the quality of precast concrete is high especially as it is produced under high control. But there is a lack of awareness and information about the previously made concrete in our country.
- 2. Anisha Mire, et al (2017) As precast members are included in all industries transfer work in factories from the site as a result of which the total amount of construction is less standard system. Production elements such as slab, column, and beam in factory improves quality production and reduces the amount of time required construction as all members connect only to the construction site. Theoreticallythe construction costs of precast technology are higher than cast-in-place technology but actually when we consider the cost of damage and the speed of construction with The cost of building high quality concrete is minimal. The main benefits of Precast concrete technology is high quality, labor costs are low, construction is slow loss and value of cash product.
- 3. Sayali A. More, et al (2017) The paper is based on an analysis of time, cost, and precast concrete level. As a developing country, the precast fills in the need for the construction industry. Cost depends on time as the cost of construction increases over time and varies depending on the productivity of the project. Ku this paper author is researched by cost, time, quality and precast production concrete. Precast construction requires less time than cast-in-place, and larger quality and mass production. In the process of producing precast concrete level check in each category.
- Richard Oduro Asamoah et al (2016) In Ghana the construction industry is booming effective in the area of cost and acquisition of advanced or modern technology. Ku construction industry effective cost management of customers, developers and promoters

to get the amount of money. The study aims to analyze the cost cost of part of the structure for example, column and slab by separating the installation method and the pre-distributed concrete method. According to the author the research results that prefabricated concrete is 21.4% less than the total cost than locally made concrete. According to a Ghanaian author it is becoming more efficient in the area of cost as well with advanced technology. Effective management can reduce the cost of construction and the same duration that gives the client its indirect value money. This study aims to compare the cost of building precast concrete as well cast cast in place. The front concrete is 23.22% lower than cast in place concrete.

5. C.Sivapriya et al (2016) now the construction industry is replacing their traditional methods to build with a new strategy, using standard, systematic systems. A standard system consisting of Cast-inplace concrete as a pre-broadcast system developed by only collection of precast site members. Forms used in precast can be used in hundreds of time savings on construction costs.

III. METHODOLOGY

The precast structural elements can be broadly divided into two categories based on the production method, namely Solid and Empty Backbone. For standard living space construction of large columns, beams, canopy, wall panels, closures, balcony, stairs, slabs etc. In these columns, beams, canopy, wall panels, closures and balcony, stairs, chairs. slope and slabs are the bare backbone of various types. For me a typical building site has many other pre-installed elements such as lift core, boundary walls, curb stones, etc.

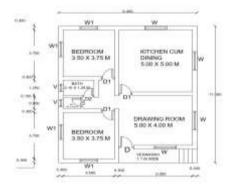
Benefits are provided by precast There are so many benefits associated with the use of precast technology concrete components. That's right these require proper composition, proper use of materials and production processes with skilled and knowledgeable staff. Well-designed and afloat concrete go a long way to reduce and eliminate many common construction problems, while the precast economy translates into faster, less expensive projects.

- A. Speed-to-market
- B. Quality & durability
- C. Integrated project delivery
- D. Enhances safety
- E. Sustainability
- F. Optimization & flexibility

Type of precast system

Depending on the load bearing structure precast systems can be divided into the following categories:

- a) Large panel systems
- b) Frame systems
- c) Slab column systems with wall
- d) Mixed system


Precast components

- a) Slabs
- b) Beam
- c) Columns
- d) Walls
- e) Stairs

Barriers to precast construction in India

- a) Investment
- b) Space Availability
- c) Taxation
- d) Transportation
- e) Infrastructure
- f) Standardization
- g) Joints & Connections
- h) Perception

IV. CASE STUDY

Fig-1 Plan of single story building

A. Cost Analysis

a) By Conventional Method

Table -1: Abstract Sheet

ENRTWHORK IN CREAKINGTON IN SOLARGADON 21.74 CLUM EAR 1 SOLARGADON 21.74 CLUM EAR 2 MCC POSIMING S-EAB RAM CLUM EAR 3 THICKNEY LOF AQUITAS RAM CLUM EAR 3 THICKNEY LOF AQUITAS RAM CLUM EAR 4 DPC OF 22-42C, 2.5-CM 2.3.55 60.34 FEILING CLUM 4 DPC OF 22-42C, 2.5-CM 2.3.55 60.34 ESE SQLM 7722 5 BEE COLLINES 4.4793 CLUM EAR CLUM EAR							
Inconstantors 21-26 Cui M 454 Cui M 18141 900 OF COLLIMMS 900 OF COLLIMMS 8.48 Cui M 5844 Cui M 18141 2 THEOROGING 5.48 8.48 Cui M 5864, 2 Cui M 5868 3 CONCETTI IN BOTTING 4.88125 Cui M 5868 7722 4 THEOROGING 5.48 8.48 Cui M 5868 7722 5 BECCOLLIMES 4.8912 Cui M 18421 Cui M 19424 7 BECCOLLIMES 4.8913 Cui M 18421 Cui M 19427 8 BECCOLLIMES 4.891 Cui M 19428 Cui M 19427 8 BECCOLLIMES 4.891 Cui M 19428 Cui M 19427 8 BECCALLIMER AND RUMERING THER 48.727 CUI M 82.88 Cui M 19577 8 BECMARE AND RUMERING THER 48.727 CUI M 19428 SCUI M 19577 10	TERM NO	FAILTICOLARS OF ITTME	QUANTITY	UNIT	8471	108	AMOUNT
2 THEOREM OF POOLINES 8.88 CLUM SHERS CLUM SHERS 2 CONCENTS IN POOLINES 4.89121 CLUM SHERS CLUM SHERS 4 DEC OF 12-4C, CLICOM 4.89121 CLUM SHERS CLUM SHERS 5 BELC COLLARS 4.0912 CLUM SHERS CLUM SHERS 5 BELC COLLARS 4.0913 CLUM SHERS CLUM SHERS 6 MCC PERME 1.491 CLUM SHERS CLUM SHERS 7 BEC PLANTH MERMENTINGCTURE 4.811 CLUM SHERS CLUM SHERS 8 DEPICHALT HER RE ALL IS 4.811 CLUM SHERS CLUM SHERS 8 DEPICHALICHARE RE ALL IS 4.821 CLUM SHERS CLUM SHERS 8 DEPICHALICHARE RE ALL IS 4.721 CLUM SHERS CLUM SHERS 13 BEC MULLIN GCONDEXPED DLMESTING CHUM SLIDIS CLUM SHERS	i.	ROUNDATION	21.74	CU.M	454	CU.M	30311.84
4 DPC OF 12-PC C 2.5-CM THY, WITH MIP, MATTENNA, 13-35 93.34 456 92.34 7722 5 BEC COLOME 4.059 CLAM 14452.3 CLAM 3452 6 MCC 953AA 5.441 CLAM 14452.3 CLAM 3452 7 MCC 953AA 5.442 CLAM 14583.3 CLAM 3452 8 MCC 953AA 5.442 CLAM 14583.3 CLAM 9457 8 Do CLASS EAK. WE SAMEKERMUCTURE 44.717 CLAM 1459.45 32.344 32.344 9 DO CLASS EAK. WE SAMEKERMUCTURE 44.727 CLAM 32.344 32.344 33.344 10 FLAKE BARK RE RUN BLANC MARK RE RUN 82.3807 CLAM 35.344 32.344 35.375 11 SAMEKHONDER RE FULING IS PLINTIN BL-38075 CLAM 35.375 CLAM 35.375 12 MC C MARM RE RUN BLANC AND AND CANCE 12.355755 CLAM 35.375 CLAM 35.375 12 <	2		8.08	Ci M	\$885,2	CO.M	50805.11
4 THM, BRTWART, MATTHING, 12:38 10:349 456 90:349 7722 5 BETC COLUMN 4.019 CLAN 14:513 CLAN 15:513	1	CONCILITE IN FOOTING	4.00121	C/.M	7111.1	CQ.86	11411.28
B MC2 05344 3.481 CULM 21583.1 CULM 6837 7 NC2 4507H 86440 5.481 CULM 21583.1 CULM 6837 8 be CLASS 34, VE SUBMERTINGUE 44,71.75 CULM 8257.3 CULM 6837 8 be CLASS 34, VE SUBMERTINGUE 44,71.75 CULM 8255.33 CULM 9877 9 SUBPERTINUCTIONE 44,71.75 CULM 8255.33 CULM 9877 10 LARLEANS FLIK, IN 42,721 SQLM 13537 CULM 525.44 13537 11 BADIOMORE NF FLIKING IN PLATE BL 28075 CULM 525.44 13537 12 BADIOMORE NF FLIKING IN PLATE BL 28075 CULM 521.44 13537 13 RCC MARIA MULI GARADE 4,538 CULM 13537 CULM 14537 14 NUCT MALL SUMMERTINGUE 13,353725 CULM 1454.55 1244.55 1244.55 13 COMM PLATITINGUE MULLING IALINE SULINE	4		17.16	92.94	458	NOM	7722.00
3 BIC FUNTHA BEAM 1.481 OLIM (1988) OLIM (1988) OLIM (1988) 8 Lo CLASE MAY REVEAUELTURE IN CAM, 218 44.1717 CLAM (4255.33) CLAM (1988) 9 Lo CLASE MAY REVEAUELTURE IN CAM, 218 44.1717 CLAM (4255.33) CLAM (1988) 9 Lo CLASE MAY REVEAUELTURE IN CAM, 218 4.7251 CLAM (1986.53) CLAM (1986.53) 10 LO CLASE MAY REVEAUELTURE IN COMPOSITION (1986.53) 4.7251 CLAM (1986.53) CLAM (1986.53) 10 SAMTONE DIN FLUING IN PLATTER INCOMPOSITION (1986.53) 4.1215 CLAM (1986.53) 15577 12 MACHING MAY RUNNIN INCOMPOSITIONS (1986.51) EL235 CLAM (1986.53) 15379 12 MACHING MADI (1986.52) 4.35581 CLAM (1986.53) 15389 13 MACHING MADI (1986.52) 4.3557.52 CLAM (1986.53) 15389 14 MARCHING MADI (1986.53) 21.3577.751 SAM (416.65) SQLM (12957) 14 MARCHING MADI (1986.53) 1381.53 SQLM (1296.73) 11248 15 CLM 1.1 SUMMITING (1987.53) 1397.751 S	5	BET COLUMN	6.059	CL.M	14412.3	CU.M.	54520.81
B Lo CLASS S.M. NY SUMMETRUCTURE IN C.M. 2:8 44:71.71 CU.M. A205.33 CU.M. 38075 B TOT DLAST INAN F M. IN IN INFORMATION INFORMATION CONTENTS OF A 100 MILLING CONTENTS OF A 100 MILLING CONTENTS OF A 100 MILLING CONTENTS OF A 100 MILLING CONTENTS INFORMATION CONTENTS OF A 100 MILLING CONTENTS OF A 100 MILLING CONTENTS INFORMATION CONTENTS OF A 100 MILLING CONTENTS INFORMATION INFORMATION INFORMATION INFORMATION CONTENTS OF A 100 MILLING CONTENTS INFORMATION INFORMATION INFORMATION INFORMATION CONTENTS OF A 100 MILLING CONTENT INFORMATION INFORMATION INFORMATION INFORMATION CONTENTS INFORMATION INFORMATION INFORMATION INFORMATION CONTENTS OF A 100 MILLING CONTENT INFORMATION CONTENTS INFORMATION CONTENTS OF A 100 MILLING CONTENT INFORMATION CONTENTS OF A 100 MILLING CONTENT INFORMATION CONTENTS OF A 100 MILLING CONTENT INFORMATION CONTENTS INFORMATION CONTENTS OF A 100 MILLING CONTENT INFORMATION CONTENTS OF A 100 MILLING INFORMATION OF A 100 MILLING CONTENT INFORMATION CONTENTS OF A 100 MILLING INFORMATION OF A 100 MILLING CONTENT INFORMATION CONTENTS OF A 100 MILLING INFORMATION OF A		HCC BEAM	3.461	CU.M	11928.1	CU.M.	65377.92
B IN C.M. 2:6 44:71.79 CU.M. 2007.33 2007.33 2007.33 2007.33 2007.33 2007.33 2007.33 2007.33 <t< td=""><td>1.</td><td>NOC FUNTH BEAM</td><td>5.401</td><td>0134</td><td>11434.1</td><td>CU.M</td><td>#1372.42</td></t<>	1.	NOC FUNTH BEAM	5.401	0134	11434.1	CU.M	#1372.42
B SUPERSTRUCTURE IN CALL 16 4.72 TALM 1218-LE SQLM			46.7179	CU.M	8205.53	CU.M	300757.50
13 MACHINGTOR NETWORT 8.2215 OLM PERST GLAM 45500 12 MCL CHARLIA MOLI GARADE ALCURPARE (MRTIL 23 4.5558 OLM PERST GLAM 15507 12 MCL CHARLIA MOLI GARADE ALCURPARE (MRTIL 24 4.5558 OLM 21196.1 GLAM 18437 13 REC SLARE MOLD 113.305725 GLAM 446.6 SQLM 17.544 14 WILTERING SUBME THRE 277.701 SQLM 446.6 SQLM 12957 13 CLM DAT ADMITHAL 181.05 SQLM 415.6 SQLM 12129.7 14 WILTHOUSE (ACLUADING WILL AL SQLM 181.05 SQLM 416.6 SQLM 12129.7 15 CLM OF RARED MARIADUC TRE FLOOPING (ACLUADING WILL ASCHILL AND DAVID WILL AL SQLM SLAM 1204.025 SQLM 186.01 16 TRE FLOOPING CHARANGE WILL ASCHILL AND DAVID WILL ASCHILL AND DAVID WILL AND DAVID WILL AND DAVID WILL ASCHILL AND DAVID WILL AND DAVID WILL ASCHILL AND DAVID WILL AND	8	BUPORSTRUCTURE IN C.M. 1-8	4.725	12.14	1996-60	82,88	1518.08
12 MEC CHAIN MOTO GAMOR 4.5058 CAM 1.2144.1 CALM 9.844.1 13 RCC SAME MOTO 11.3025725 CALM 121486.1 CALM 121486.1 14 RCC SAME MOTO 11.3025725 CALM 121486.1 CALM 121486.1 14 RCC SAME MOTO 11.3025725 CALM 121496.1 CALM 121496.1 14 RCC SAME MOTO 121.3025725 CALM 446.6 SQLM 12957.1 13 IZMME PLATTERING TEMME WITH INC. 18 SQLM 415.6 SQLM 112957.1 14 TEX TROOMING COLLORING INC. 18 SQLM 612.6 SQLM 1294.9 84.211 15 CEMENT BASED MADIANC SULME SALE SQLM 1294.15 SQLM 84.211 14 TRUCONING SCHLORING SULME SALE SQLM 1294.15 SQLM 84.211 15 MCC PARTHERING TEMENTING SQLM 129.4 84.21 SQLM 129.4 129.4 129.4 129.4	128	EARTHINGTONE IN FELLING IN PLINTIN	38.38375	CU.Mt	\$29.15	CLM	25571.25
12 HCLUDPHE (JNTE) 4.558 CAMP 12186.1 CAMP 9844 13 RCC SARE MOD 13.3025/25 CAMP 14186.1 CAMP 17166 14 RECESSARE MOD 13.3025/25 CAMP 1466.6 SQLM 12567 14 RECESSARE MODE 13.3025/25 CAMP 466.6 SQLM 125957 13 SUMM PACENERS WITH INC. 552.M 415.8 SQLM 1121957 13 CEMENT ACCOUNTS INC. 552.M 415.8 SQLM 11218 14 TEXT RODUNDS CREATER INC. 552.M 415.8 SQLM 11218 14 TEXT RODUNDS CREATER INC. SQLM 1204.05 SQLM 1106.05 14 TEXT RODUNDS CREATER SQLM 1204.05 SQLM 186.00 14 TEXT RODUNDS CREATER SQLM 1204.05 SQLM 1165.0 15 MODE/ACCENTRING, URTERS ACCOUNTS SQLM 1204.05 SQLM 1161.0	83	BRICEWORK & PUNTH	8.2235	C/ M	7978.55	C12.84	\$5395.65
14 INVERTIGATION TONE 277.702 SOLME 466.6 SOLME 1295.7 13 200MM PLATING WITH 181.78 90.M 415.6 SOLME 1295.7 13 200MM PLATING WITH 181.78 90.M 415.6 SOLME 1128 14 UM PLATING WITH 181.78 90.M 415.6 SOLME 1128 15 CMM PLATING WITH 181.78 90.M 415.6 SOLME 1128 16 CMM PLATING WITH 181.78 90.M 415.6 SOLME 186.78 16 MC20ACT LLE UNRTING CMULTING UNRTING 51.89 M 116 M 7551 17 MC20ACT LLE UNRTING 25.77% 90.4M 116 M 7551 18 FUCON THES AND DADO 22.77% 90.4M 1256.45 50.4M 7561 18 FUCON THES AND DADO 22.77% 90.4M 1256.75 90.4M 1267.75 90.4M 1276.75 90.4M 1276.75 90.4M	ш		4.5038	C/.M	17096.3	CU.M	58542.74
14 WITW C. M. 1.3 277.782 50.84 466.6 50.44 1299.7 13 208.06 M24217809465 WITH 186.78 50.44 615.6 50.44 1299.7 13 208.06 M24217809465 WITH 186.78 50.44 615.6 50.44 11299.7 14 CML 14 EXTERNAL 186.78 50.44 615.6 50.44 1129.7 15 CML 14 EXTERNAL 186.78 50.44 615.6 50.44 186.28 16 TLE RODUISS CHULLDING S1.80 50.24 1204.25 50.44 886.28 17 CENESTE RESED MARIANEL S1.80 50.24 1204.25 50.44 886.28 18 MCDON TLE 3-450 04200 22.778 50.44 155 50.44 29657 18 ROUGH TLE 3-450 04200 22.7778 50.44 155 50.44 296.25 1141.25 28 ROUGH TERBANCY 109.878 50.34 1294.15 50.44 1294.15 1294.15 1294.15 1294.15 1294.15	1.8	RCC SLAE M20	13.905725	CJ M	14188.1	CU.M	173444.5
13 E.M. 5.4 (2010) 181.76 50.40 61.76 50.40 11126 16 TALT RODHING, (RCLUCING MC / SATE SIL 805 102.40 1204.05 SIL 80 102.40 102.40 SIL 80	58		277.702	30.94	486.5	353.M	129579.7
Lis Title THODHING: DECLIGING: MC / SATE SL BIS SL M L204.05 SL M HELD 17 COMERT RADIO MARKES; MC2DAY, CLU, SERTING, MC2DAY, SCHWARD, MC2DAY, SCH	13		101.75	143,M	615.4	30.66	111298-1
47 MADEDNCTILE SHRITING 63-28 M 136 60 7591 18 FLOOR THEE SHO DADD 22 77% 90,344 1275-815 90,444 29667 18 NVIDE (JARD) 222 77% 90,344 1275-815 90,444 29667 19 COLDURING DITERNALIV 2277-7262 93,344 6883 52,644 12412 20 COLDURING DITERNALIV 2277-7262 93,344 6883 52,644 12442 211 FULL (FMARLIG) THERALIV 2270.7792 93,344 6883 52,644 12442 221 FULL (FMARLIG) THE LOOK 121,041 3544 154,64 154,945 154,944 154,745 154,842 152,945 356,464 164,745 122,945 356,467 164,944 162,745 164,842,755 162,444 162,745 164,842,755 162,444 162,745 162,745 162,745 162,745 162,745 162,745 162,745 162,745 162,745 162,745 162,745 162,745 162,745	ы	TEETLOOKING CROLLOING	\$1,899	22.W	1204.05	953, MI	104233-01
18 PERC / IATIN 22.71% VILAW 21.76-W1 92.44 29.66 19 COLUMING CONTRANCU 207.701 92.44 603 92.44 101.27 20 COLUMING CONTRANCU 209.701 93.44 603 92.44 101.27 21 FULLY FAMPLICE TW DOOM 101.965 92.44 93.44	\$7		65.09	*	115		7552.44
20 CONDIMING EXTENSION 2018 NO. 44 7128 21 FAULY PAREILLED TWO 20004 101.885 50.34 7144 50.34 7128 22 EXEMPT FAREILLED TWO 20004 101.885 50.34 7144 50.34 50.44 50.34 </td <td>18</td> <td></td> <td>22.779</td> <td>913.W</td> <td>1276-25</td> <td>33.01</td> <td>29067.34</td>	18		22.779	913.W	1276-25	33.01	29067.34
21 FULLY FAMELICD TW DOOM 33.148 30.2 M 37.14 30.2 M 42.012 22 REMEMBERS TRAMAG 10.18/6725 30.2 M 30.0 M 167.7 23 ALLIMANSAM WINDOW 12.2 M 50.4 M 72.1 M 30.2 M	14	COUNSING INTERNALLY	277.244	112.61	683	\$2.98	154130.07
22 Emission 512 (MARC) 512 (MARC) 523 (MARC)	211	COLOUMING EXTERNALLY	190.79	30.07	35%	30.54	71346.88
21 ALLIMMEN/WINCOW 12.36 SQ.M 71.17 SQ.M 81239 24 M.S.SPRL 12.56 SQ.M S7.73 SQ.M 68125	21	FIGUR PANELLED TW DOOR	10.963	102.00	31.14	142.44	43052,49
24 M.S.SPAL 12.96 SQ.M 5270 SQ.M 68105				142.86		NOM	3473.02
	23	ALLUMINELM WINDOW	12.96	30.11	7137	30.M	10230-12
25 WINFORCIMENT 3677.325 KG 71.47 KG 2648							68105-12
	- 25	BUNFORCIMENT	3677.325	85	71,47	16	264621.8
	_				_	_	Distance of

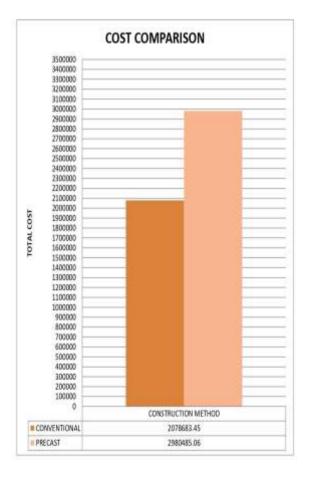
Above abstract sheet represents the particulars of items with respect to their rates and quantity of single story plan (as mention in fig-1). These shows that the by conventional method total expenditure 20,78,683.46 Rupees.

Note- All rates are taken as per SSR 2020-2021

b) By Precast Method

Table -2: Abstract Sheet

	ABSTRA	CT SHEET				
TEM NO.	PARTICULARS OF ITEMS	QUANTITY	UNIT	3001	.9 <u>0</u> 8	AMOUNT
1	EARTHWORK IN EXCAVATION IN FOUNDATION ND. OF COLUMNS	23.76	CU.M	434	CU.M	10311.84
7	MOULD /FORMWORK/SHUTTERING	174.2503	CU.M	470.53	CU.M	82931.05
3	BCC WORK	137.383	CU.M	11958.17	CU.M	1637177.75
- 4	CURING.	137.383	CU.M.	200	CU.M	27477.00
5	TRAMSPORTING	137.385	CU.M	429.07	CU.M	5/8947.78
6	ASSEMBLING AND FOUNG	137.385	CU.M	1276.05	CU.M	175310,13
7	KOINT FILLING BY PCC	137.385	CU.M	1204.3	CU.M	165480.23
8	EARTHWORK IN FILUNG IN PUNTH	38,28375	CU.M	929.15	OU.M	35571.35
9	PLASTERING 12MM THE. WITH C.M. 1/3	277.702	9Q.M	486.6	50.M	129575.75
30	20MM PLASTERING WITH C.M. 1:4 EXTERNAL	\$80.7K	SILM	615.8	SQ.M	111288.17
11	CEMENT HASED MOZZAIC THE FLOORING EXCLUDINE WC / BATH	81.899	SOM	1204.05	SQ.M	101610.49
12	CEMENT BASED MARBEL MOZZAIC THE SKRTING	65.08	м	336	м	7558.44
13	FLOOR TILES AND DADD IN WC / BATH	22.779	50.M	1276-05	SQ.M	29067,14
34	COLOURING INTERNALLY	277.702	50.M	4313	3Q.M	134130.07
15	COLOURING EXTERNALLY	180,78	50,68	396	50.64	71588.88
16	FULLY PANELLED TW DOOR	10,981	3Q.M	3736	\$42.M	41012.49
13	FINISHING TERMACE	11,915725	CU.M	108.25	CU.M	3673.02
18	ALLUMINIUM WINDOW	12.96	50.M	7117	5Q.M	92236.32
19	M.5.GRIL	12.96	SQ.M	5272	5Q.M	68325.12
					107.44	2980485.0


Above abstract sheet represents the particulars of items with respect to their rates and quantity of single story plan (as mention in fig-1). These shows that the by precast method total expenditure 29,80,485.06 Rupees.

Note- All rates are taken as per SSR 2020-2021

c) Cost Comparison

As below chart represent the cost comparison between conventional and precast method the total difference between them is 9,01,801.60 Rupees this represent that for single story building precast method is costlier than conventional method.

Charts - 1

a) By Conventional Method

Table -3: Durations

SR.NO.	ACTIVITY	DESCRIPTION	DURATION
1	1_2	SURVEY, DESIGN AND LAYOUT	3
2	2.3	CONSTRUCTION OF FOUNDATION	8
3	3_4	CONSTRUCTION OF SUPERSTRUCTURE	15
4	4_5	SLAB	25
5	5_6	FIXING DOOR AND WINDOWS	3
6	5_7	PLUMBING	3
7	5_8	ELECTRIC FITTING	3
8	8_9	PLASTERING	6
9	9_10	FLOORING	4
10	10_11	CARPENTARY WORK	5
11	10_12	OTHER MINOR WORK	3
12	12_13	CLEARING	2
13	13_14	FINISHING OF DOOR AND WINDOWS	3

Table -4: Floated Time Calculation

REMARK	FLOAT	TIME	LATEST	TTIME	EARLIES	DURATION	ACTIVITY
		L.F.T	LS.T.	E.F.T.	E.S.T.		
	0	3	0	3	0	1	1_2
	0	11	3	11	3	8	2.3
	0	26	11	26	11	15	3_4
EXTRA	0	51	26	51	26	25	4.5
FLOAT	3	57	54	54	51	3	5_6
	3	57	54	54	51	3	5_7
	0	54	57	54	51	3	5_8
11	0	60	54	60	54	6	8.9
	0	64	60	64	60	4	9_10
	5	74	69	69	64	5	10_11
	0	67	64	67	64	3	10_12
	0	69	67	69	67	2	12_13
	0	72	69	72	69	3	13_14

As above table shows the total time required by each activities a total time for construction of a single storey building it requires 72 days with 11 days as a float.

b) By Precast Method

Table -5: Durations

B. Time Analysis

SR.NO.	ACTIVITY	DESCRIPTION	DURATION
1	1_2	SURVEY, DESIGN AND LAYOUT	3
2	2_3	PRECASTING COMPONENTS	15
3	3_4	TRANSPORTING	3
4	4_5	ASSEMBLING AND FIXING	3
5	4_6	JOINT FILLING BY PCC	3
6	6_7	FIXING DOOR AND WINDOWS	3
7	6_8	PLUMBING	3
8	6_9	ELECTRIC FITTING	3
9	9_10	PLASTERING	4
10	10_11	FLOORING	2
11	11_12	CARPENTARY WORK	5
12	11_13	OTHER MINOR WORK	3
13	12_14	CLEARING	2
14	12_15	FINISHING OF DOOR AND WINDOWS	3

Table -6: Floated Time Calculation

ACTIVITY	DURATION	EARLIE	ST TIME	LATEST	TIME	FLOAT	REMARK
		E.S.T.	E.F.T.	LS.T.	L.F.T		
1_2	3	0	3	0	3	0	1
2_3	15	3	18	3	18	0	
3_4	3	18	21	18	21	0	
4_5	3	21	24	24	27	3	
4_6	3	21	24	21	24	0	EXTRA
6_7	3	24	27	27	30	3	FLOAT
6_8	3	24	27	27	30	3	=
6.9	3	24	27	24	27	0	14
9 10	4	27	31	27	31	0	
10_11	2	31	33	31	33	0	
11_12	5	33	38	33	38	0	
11_13	3	38	.41	41	44	3	
12_14	2	38	40	40	42	2	
12 15	3	38	41	38	41	0	1

As above table shows the total time required by each activities a total time for construction of a single storey building it requires 41 days with 14 days as a float.

c) Time Comparison

Table -7: Time Comparison

S.N.	CONVE	ENTION	AL	PI	TIME SAVED		
	ACTIVITY	DAYS	TIME	ACTIVITY	DAYS	TIME	DAYS
1	1_2	3	3	1_2	3	3	0
	2_3	8		2.3	15		
2	3_4	15	48	3_4	3		24
2	4_5	25		4_5	3	24	
				4_6	3		
3	5.6	3	3	6_7	3	3	0
4	5_7	3	3	6_8	3	3	0
5	5.8	3	3	6_9	3	3	0
6	8_9	6	6	9_10	4	4	2
7	9_10	4	4	10_11	2	2	2
8	10_11	5	5	11_12	5	5	0
9	10_12	3	3	11_13	3	3	0
10	12_13	2	2	12_14	2	2	0
11	13_14	3	3	12_15	3	3	0
						TOTAL	28

The above table shows the time comparison between conventional and precast method as you see the total time save by activity is the **28 days.**

V. ADVANTAGES

- 1. Concrete is cast off site
- 2. Identical forms can used several times
- 3. Batter quality control
- 4. Control on curing
- 5. Un affected by weather, when casting
- 6. Construction in less time
- 7. Waste materials can be used (fly ash)
- 8. Fire resistant
- 9. Can avoid air born pollution on site (dusting)

VI. DISADVANTAGES

- 1. Costlier for small projects
- 2. Required skilled workers
- 3. Transportation is costly of large members for small projects.
- 4. It's required to be design and detailed for transportation, erection.
- 5. Required different site for its production

VII. RESULT

- Conventional method brings construction Cost 30 to 40 % down than precast method for single story buildings.
- 2. Precast method brings construction Cost 10 to 15% down (for larger identical structure) as compared to conventional method.
- 3. Precast Technology can save time up to 64% compare to conventional method.

VIII. CONCLUSION

- 1. It has good quality control.
- 2. Construction speed can be increased by precast construction
- 3. The need for staff in precast construction is very small.
- 4. Installation and connection of precast construction is also very easy.

IX. FUTURE SCOPE

1. Precast Construction not only speeds up work but also enhances the workability and quality of construction.

2. Precast Concrete allows workers to cast precast components, fixtures and install utility access.

X. REFERENCES

- [1] Anderson, M., and Anderson, P. (2007). "Prefab prototypes Site-specific design for offsite construction." Princeton Architectural Press, New York, USA.
- [2] Tam, V.W., Tam, C.M., Zeng, S.X. and Ng, W.C., (2007). "Towards adoption of prefabrication in construction". Building and environment, 42(10), pp.3642-3654.
- [3] Jaillon, L., and Poon, C. S. (2008). "The evolution of prefabricated residential building system in Hong Kong: A review of the public & private sector." Automation in Construction, Vol. 18, pp. 239-248.
- [4] Smith, R., and Narayanamurthy, S. (2008).
 "Prefabrication in Developing Countries: A Case Study of India." www.scholarworks.umass.edu, Without A Hitch-New Directions in Prefabricated Architecture, pp. 48-53.
- [5] Bendi, D., Arif, M., Sawhney, A. and Iyer, K.C. (2012).
 "Offsite Construction in India-An Exploratory Study". International Conference on Structural & Civil Engineering, pp. 64-67.