
 Issue 9 vol 3 ISSN: 2321-8134

http://www.ijfeat.org(C) International Journal For Engineering Applications and Technology,CSIT (121-124)

IJFEAT

INTERNATIONAL JOURNAL FOR ENGINEERING APPLICATIONS AND

TECHNOLOGY

KEY EXCHANGE PROTOCOL TO REDUCE THE WORKLOAD ON METADATA

SERVER : A REVIEW

Manjeeri D Nawghare

1
, Monika S Bora

2
, Krutika A Mandape

3
, Prof. Aditya P Bakshi

4

1
Student, Department of CSE, JDIET, Maharashtra, India, manjeerinawghare@gmail.com

2
Student, Department of CSE, JDIET, Maharashtra, India,monikabora98277 @gmail.com

3
Student,Department of EXTC, JDIET, Maharashtra, India,krutikaashokmandape@gmail.com

4
Assistant Professor, Department of CSE, JDIET, Maharashtra ,India, bakshi.aditya.ab@gmail.com

Abstract

There is a problem of establishing key in order to secure many-to-many communications as there is a increase in the use of large-

scale distributed file systems that supports parallel access to multiple storage devices. The focus is on the current Internet

standard for such file systems, that is, parallel Network File System , which makes use of Kerberos to establish parallel session

keys between clients and storage devices. The review of the existing Kerberos-based protocol shows that a metadata server

facilitating key exchange between the clients and the storage devices has heavy workload that restricts the scalability of the

protocol. Here, a authenticated key exchange protocol is proposed capable of reducing the workload of metadata server.

Index Terms: Parallel Sessions ,Authenticated Key Exchange, Network File Systems, Metadata Server.

--- *** --

1. INTRODUCTION

With the increase in the use of internet ,data security is the

major concern. The data of internet clients is being stored in

the storage devices and in order to access that data of
multiple clients parallel applications are used. This is

usually used in technologies that focuses on high

performance and reliable access to large datasets. That is,

higher I/O bandwidth is achieved through concurrent access
to multiple storage devices within large data storages; while

data loss is protected through data mirroring . These are

usually required for advanced scientific or data-intensive

applications where hundreds or thousands of file system
clients share data and generate very high aggregate I/O load

on the file system supporting terabyte-scale storage

capacities.
 Here, the problem considered is of securing many to-
many communications in large-scale network file systems

that support parallel access to multiple storage devices.

Here, we consider a communication model where there are a

large number of clients (potentially hundreds or thousands)
accessing multiple remote and distributed storage devices in

parallel. The focus is on how to exchange key materials and

establish parallel secure sessions between the clients and the

storage devices in the parallel network file systems that is
the current Internet standard in an efficient and scalable

manner.

 The primary goal in this work is to design efficient and
secure authenticated key exchange protocol that meet

specific requirements of parallel network file systems.
Particularly, we attempt to meet the following desirable

property which either have not been satisfactorily achieved

by the current Kerberos-based solution: The metadata server

facilitates access requests from a client to multiple storage
devices should have little workload as possible such that the

server is capable of supporting a very large number of

clients. The main result here is a new secure authenticated

key exchange protocol. The protocol is proposed to achieve
the scalability property. The proposed protocol can reduce

the workload of the metadata server compared to the current

Kerberos-based protocol, while achieving the desired

security property and keeping the computational overhead at
the clients and the storage devices at a low level. An

appropriate security model is defined and shown that the

protocol is secure in the model.

2. LITERATURE REVIEW

[2], designed Maat, a security protocol to provide strong,

scalable security to these systems. Maat encompasses a set
of protocols that facilitate (i) authenticated key

establishment between clients and storage devices, (ii)

capability issuance and renewal, and (iii) delegation between

two clients. The authenticated key establishment protocol
allows a client to establish and re-use a shared (session) key

with a storage device. However, Maat do not come with

rigorous security analysis.[3], focussed on scalable security.

This proposal assumed that a metadata server shares a group
secret key with each distributed storage device. The group

 Issue 9 vol 3 ISSN: 2321-8134

http://www.ijfeat.org(C) International Journal For Engineering Applications and Technology,CSIT (121-124)

key is used to produce capabilities in the form of message

authentication codes. However, compromise of the metadata

server or any storage device allows the adversary to
impersonate the server to any other entities in the file

system. This issue can be alleviated by requiring that each

storage device shares a different secret key with the

metadata server. Nevertheless, such an approach restricts a
capability to authorizing I/O on only a single device, rather

than larger groups of blocks or objects which may reside on

multiple storage devices. [4], proposed SFS based on public

key cryptographic techniques, that was designed to enable
inter-operability of different key management schemes.

Each user of these systems is assumed to possess a certified

public/private key pair. However, these systems were not

designed specifically with scalability and parallel access in
mind.

3. INTERNET STANDARD--NFS

Network File System (NFS) is currently the basic file
system

standard supported by the Internet Engineering Task Force

(IETF). The NFS protocol is a distributed file system

protocol originally developed by Sun Microsystems that
allows a user on a client computer to access files over

networks in a manner similar to how local storage is

accessed .It is designed to work different machines,

operating systems, network architectures, and transport
protocols. NFS is used in environments where performance

is a major factor. The most recent version of NFS, parallel

network file system that allows direct, concurrent client

access to multiple storage devices to improve performance
and scalability.

Fig-1:Conceptual view of parallel network file systems

When file data for a single NFS server is stored on multiple
storage devices (by comparison to the server’s throughput

capability), the result can be significantly better file access

performance. Parallel network file systems processes regular

files data by stripping and storing across storage devices or
servers. Data striping occurs in two ways: on a file-by-file

basis for smaller files and, for sufficient large files, on a

block-by-block basis. In parallel NFS, a read or write of data

managed ,is a direct operation between a client node and the
storage system itself.

 More specifically, parallel NFS comprises a

collection of three protocols (fig-1)(i) the parallel NFS

protocol that transfers file metadata, also known as a layout,
between the metadata server and a client node; (ii) the

storage access protocol that specifies how a client can access

data from the associated storage devices according to the

corresponding metadata; and (iii) the control protocol that

synchronizes state between the metadata server and the
storage devices.

3.1 Security Concern
Earlier versions of NFS focused on simplicity and

efficiency, and were designed to work well on intranets and
local networks. The later versions i.e parallel NFS aim to

improve access and performance within the Internet

environment. However, security has become a major

concern. Among many other security issues, user and server
authentication within an open and distributed environment

are a complicated matter. Key management can be fatigue

and expensive, but an important thing to ensure security of

the system. Moreover, data privacy may be critical in high
performance and parallel applications, for example, those

associated with biomedical information sharing , financial

data processing & analysis. Hence, distributed storage

devices possess greater risks to various security threats, such
as illegal modification or stealing of data that resides on the

storage devices, as well as change of data in transit between

different nodes within the system. NFS, therefore, has been

mandating that implementations support end-to-end
authentication, where a client mutually authenticates to an

NFS server. Moreover, major concern should be given to the

integrity and privacy of NFS requests and responses.

3.2. Kerberos & LIPKEY
In parallel NFS, the Kerberos and the Low Infrastructure

Public Key (LIPKEY) mechanisms are used. Kerberos is

used particularly for user authentication, while LIPKEY
particularly used for server authentication in the Internet

environment. Kerberos, a widely deployed network

authentication protocol supported by all major operating

systems, allows nodes communicating over a non secure
network to perform mutual authentication. It works in a

client-server model, in which each domain is governed by a

Key Distribution Center (KDC), acting as a server that

authenticates and provides ticket-granting services to its
users (through their respective clients) within the domain.

Each user shares a unique password with its KDC and is

authenticated through a password-derived symmetric key

that is known only between the user and the KDC. However,
one security weakness of this authentication method is that

when a weak password is used to derive a key that encrypts

a protocol message transmitted between the client and the

KDC ,there is threat of an off-line password guessing attack.
Hence, LIPKEY authenticates the client with a password

and the metadata server using its public key certificate, and

there by establishes a secure channel between the client and

the metadata server. Through LIPKEY, a client with no
public key certificate accessing a server with a public key

certificate, for this the client in NFS :

• obtains the metadata server’s certificate

• verifies that it was signed by a trusted Certification
Authority (CA)

• generates a random session symmetric key

• encrypts the session key with the metadata server’s public

key and

• sends the encrypted session key to the server.

 At this point, the client and the authenticated metadata

server have set up a secure channel and now the client can

 Issue 9 vol 3 ISSN: 2321-8134

http://www.ijfeat.org(C) International Journal For Engineering Applications and Technology,CSIT (121-124)

provide a user name and a password to the server for user

authentication.

4.KERBEROS-BASED PNFS PROTOCOL

The key establishment protocol recommended for parallel

NFS between a client and n storage devices , through a

metadata server is considered. Here the efficiency of the

parallel NFS protocol is compared with the new proposed
protocol. During the setup phase, assume that metadata

server establishes a shared secret key with each the storage

device. Here, a key is derived from client’s password, that

is also known by metadata server; while there exists the role
of a ticket-granting server (it is part of metadata server).

Also, prior to executing the protocol in , the client and

metadata have already setup a secure channel through

LIPKEY.

[6]

Fig-2: Kerberos-Based parallel NFS protocol

An algorithm for the existing kerberos based parallel NFS
protocol:

Step 1: Client requests the KDC(Key Distribution Center)

asking TGT to get the service tickets.

Step 2: In response, the metadata server sends the TGT to
the client and asks the client to decrypt it using user's

password.

Step 3: Now the client passes on the TGT to Ticket Granting

Server(TGS) after decrypting and asks for service tickets.

Step 4: As the ticket granting server receives the request

from the client, it sends the service tickets, the layout,

session keys in response.

Step 5: Client passes the service tickets to the respective
storage devices asking to authenticate itself, and thus

creating a session between the client and storage devices.

Step 6: Storage device convince the client that, storage

device is using the same session key that client uses. This is
a key confirmation step.

 Once client has been authenticated by metadata

server and granted access to n storage devices, it receives a

set of service tickets, session keys, and layouts from ticket
granting server of the protocol. Clearly, the client is able to

uniquely extract each session key from authentication token.

Since the session keys are generated by metadata server and

transported to storage device through client, no interaction is

required between client and storage devices (in terms of key
exchange) in order to agree on a session key. This keeps the

communication between the client and each storage device

to minimum where key exchange is required. The

computational overhead for the client and each storage
device is very low since the protocol is mainly based on

symmetric key encryption technique. The message in step

(6) serves as key confirmation, that is to convince client that

the storage device is in possession of the same session key
that client uses.

5.PROPOSED WORK
 The proposed protocol can be said as a modified

version of Kerberos that allows the client to generate its own
session keys. That is, the key materials that are used to

derive a session key is already being computed by the client

for each validity period v ,which can be hours, days, months

ago and forwarded to the storage devices in the form of an
authentication token at time t (t is the session time with each

storage device). Along with Kerberos, symmetric key

encryption is used to protect the confidentiality of secret

information used in the protocol.

 Specification of proposed protocol:

 Firstly, Consider that client and metadata server is

authenticated and protected through a secure channel

associated with key established using the LIPKEY

mechaism. It works in two phases, where the Phase I
constitutes of pre-computing the key materials and any

request from client to access storage devices is considered

part of Phase II of the protocol until v expires.

Phase I:For each validity period v,

Step 1: Client first pre-computes a set of key materials

before it accesses any of storage devices. These

key materials are then send to meta data server asking
 for the authentication token.

Step 2: Metadata server then issues a authentication token

for each key material for the associated storage device.

Phase II: For each access request at time t,

Step 1: Client submits an access request to metadata server,

the request contains all the identities of storage devices that

Client wishes to access.

Step 2: Metadata server issues the layout for each storage
devices.

Step 3: Client then forwards the respective layouts,

authentication tokens (from Phase I), and encrypted

messages consisting of identities of storage devices, along
with time slot t for each storage device, to all n storage

devices.

Step 4: Upon receiving an I/O request for a file object from

Client, each Storage device does following checking:

 checks whether the layouts received is correct or not.

 Issue 9 vol 3 ISSN: 2321-8134

http://www.ijfeat.org(C) International Journal For Engineering Applications and Technology,CSIT (121-124)

 decrypts the authentication token and computes the

session keys

 decrypts the encrypted message, and matches the
identities send by the client.

When all the check passes, storage device replies the client

with key confirmation message using the first session key
generated. At the end of protocol, another key generated is

set to be the session key for securing communication

between client and storage device.

6.ADVANTAGES
 Key Storage

 Here the key storage requirements for Kerberos based
parallel NFS and the described protocol is roughly similar

from the client’s perspective. For each access request, the

client needs to store N or N + 1 key materials for n storage

devices in their internal states. In contrast to Kerberos-
parallel NFS, our proposed protocol do not require to

maintain any client key information.

 Workload on metadata server

 After computing using the proposed protocol , it seems
that the workload on the metadata server is decreased as

compared to existing kerberos-based parallel NFS protocol.

7. CONCLUSION

The keys are vulnerable to various attacks in a parallel NFS
and in order to provide security as well as smooth

communication between the client and storage device , a

authenticated key exchange protocol is being proposed that

has the advantage over the existing Kerberos-based parallel
NFS protocol. The proposed protocol can reduce the

workload on the metadata server.

REFERENCES

[1] Hoon Wei Lim, Guomin Yang," Authenticated Key

Exchange Protocols for Parallel Network File

Systems", IEEE Transactions on Parallel and
Distributed Systems. IEEE ,2013.

[2] A.W. Leung, E.L. Miller, and S. Jones."Scalable

security for petascale parallel file systems". ACM

Press, Nov 2007.
[3] M. Factor, D. Nagle, D. Naor, E. Riedel, and J.

Satran." The OSD security protocol". IEEE

Computer Society, Dec 2005.

[4] David Mazieres, M. Kaminsky, M.F. Kaashoek,
and E. Witchel. "Separating key management from

file system security", ACM Press, Dec 1999.

[5] Web Available at: Parallel virtual file systems
(PVFS) version 2. http://www.pvfs.org.

[6] Web available at:

https://www.google.co.in/url?sa=i&rct=j&q=&esrc

=s&source=images&cd=&ved=0ahUKEwiCqbHX
6bzWAhUFQLwKHeWmAKUQjRwIBw&url=htt

ps%3A%2F%2Fdecoder.cloud%2F2017%2F02%2

F12%2Fthe-golden

solution%2F&psig=AFQjCNGdxGgq4TCnwXblS9
t_rmKKr__R-Q&ust=1506308250987412

