
 Issue11 vol 3 (June 18) ISSN: 2321-8134

 http://www.ijfeat.org (C) International Journal For Engineering Applications and Technology, June 18 (56-59)

IJFEAT

INTERNATIONAL JOURNAL FOR ENGINEERING APPLICATIONS AND

TECHNOLOGY
An Efficient Path based Mapping of XML Document to Relational Database

Atul D. Raut

1
Prof. & HOD, IT Deptt. ,J.D.I.E.T. Yavatmal, , Maharashtra, India, atuldraut@gmail.com

Abstract

RDBMS is a well known and very extensively used data storage and querying format for flat unordered data. XML has gained

prominence as data storage and exchange format for web applications, but XML data is hierarchical and ordered in nature. Hence

mapping of XML to Relational data is very challenging and difficult, but is required to gain all the advantages of RDBMS. In this

paper a path based approach for mapping XML document to Relation tables is proposed. This technique successfully maps an XML

document using one important table and some other tables without the requirement of a schema or a DTD.

Index Terms: Path table, path summary, count, sequence list.

--- *** --

1. INTRODUCTION

In many organizations it is required to map the data that is in

one form to another form for reasons depending on the

specifications of the projects. For example, the users may

prefer to store all the data which is in XML files in the

relational database or the relational data in the XML format.

There may also a need to perform the operations which can be

done on XML in relational database and vice versa such as run

queries against the relational database and generate results in

XML. Two organizations using different format of data

storage, may need to exchange data. XML being platform

independent is one main reason why people prefer data

transfer in the XML file format [1]. One major issue in

mapping XML to Relational table is the loss of information

due to shredding XML documents and in lining the shreds to

Relational tables.

 To map the XML document to relational table the

technique first creates a path summary. This path summary

contains all the unique root to leaf paths of tree representation

of a XML document. This path summary is first mapped to

relational table pattab. This relational table pathtab contains

four attributes or columns namely the pathid, path, count and

path sequence list. The structure of path table appears as

below.

Pathid Path count Sequence list

Pathid is the sequence number of the path, path is a sequence

of node names seprated by the character „/‟ from root node to

one level above the leaf node in the tree representation of

XML document. Count is the number of times the particular

path appears and Sequence list is the list containing the

sequence numbers for that path.

 The other tables required for this technique depends

on the number of entries in the path table pathtab. If pathtab

contains six entries then this technique will require six other

tables to completely map the given XML document to

relational database. The main contributions of the proposed

technique can be summarized as below

1. This technique can be used to fire an sql query on the given

XML document.

2. It can also be used to fire an xpath query over XML

document represented in the form of relational database

efficiently

3. Does not require a DTD.

4. Query processing requires very less main memory as

compared to document storage. Hence the query response

time is very less.

2. RELATED WORK

Three major approaches have been proposed for mapping

XML to relational database and querying XML data. The first

approach develops a native XML databases that support the

XML data model and XML query languages directly. This

includes Software AG‟s Tamino XML Server, IXIA‟s

TEXTML Server, Sonic Software‟s eXtensible Information

Server and MODIS‟s Sedna Native XML DBMS. The second

approach makes use of technologies, such as relational

DBMSs , to store and query XML data [2–7]. This is a very

challenging approach since XML is ordered and hierarchical

where as Relation tables are flat and unordered. . This

approach can be broadly classified into two categories. The

first one is the schema less or structure centric approach,

which uses the XML structure to guide the mapping process

[2-4] [6-7]. The second is schema centric approach which uses

the XML schema or a XML DTD to map XML to Relational

storage. This approach has a major drawback of reconstructing

the database whenever the XML schema changes which is

http://www.ijfeat.org/

 Issue11 vol 3 (June 18) ISSN: 2321-8134

 http://www.ijfeat.org (C) International Journal For Engineering Applications and Technology, June 18 (56-59)

very expensive [5]. The third approach makes use of XML

support enabled by commercial database systems. Currently,

most major databases, such as SQL Server, Oracle and DB2,

provide mechanisms to store and query XML data by

extending the existing data model with an additional XML

data type (e.g.,XMLType in Oracle 10g) so that a column of

this data type can be defined and used to store XML data. In

addition, a set of methods is associated with this new XML

data type to process, manipulate and query stored XML data.

3. PATH SUMARRY BASED MAPPING OF XML

TO RELATIONAL STORAGE

Creating the path summary of the given XML document is the

most important step of the proposed technique. The structural

summary once created can be used for self indexed and

compact storage of the entire XML document and also for the

subsequent querying. The following section describes the

creation of structural summary.

The structure index of an XML document is a tree, such that

every path from the root to some leaf node in the document

appears exactly once in the structure index. The structure

index SI(D) of an XML document D is a tree, whose nodes are

labeled with element and attribute names from the document.

The relationship between D and SI(D),,CI(D)(Content

Index)can be described based on a function φ: (D) →
SI(D),CI(D) recursively defined as follows:

I. Φ maps the root of D which includes the element

name and attributes names without its values into the

root of SI(D). The two nodes have the same label.

II. Let children (n, l) represent the set of all the l-labeled

XML elements in D, consisting of elements names

and attribute names without their values, which are

children of the XML element n. If children (n, l) is

not empty, then φ(n) has a unique l-labeled child nl in

SI(D) and for each ni €child(n, l), φ(ni) is nl .

From implementation point of view the path summary is

represented in the form of array of strings stored in path table

pathtab. The path is constructed by traversing the path

summary tree from root node to one particular leaf node and

adding a / in front of each node name which may include the

attribute names without their values. Mathematically this

process can be represented as

/r/n1/n2/…………/nli SI[i]

where

r the root node of the path summary tree

n1 ,n2 node names on the path summary tree

including the attribute names without their values, if the

attributes are present in the node

and nli the leaf node name on the path summary tree

The subscript of the array of string acts as an index id and

provides a link to the attributes values and contents on this

path.

III. The function φ(D) maps each of the text node T(D) in the

XML document to a unique path in the path summary tree

which is finally mapped to the structure index. This mapping

can be represented as

φ(D) :T(D)PathSummary(D)S[I]

Using the index value of I a table pathtabI is created and the

contents of text node on this path is stored in the pathtabI. This

kind of path based storage leads to element less, self indexed

storage of XML document.

Thus when the above rules are applied to a XML document, it

maps the entire XML document to Relational tables. This

storage then could be utilized directly for firing sql or xpath

queries over the Relational representation of the given XML

document. Consider the following partial fragment of sample

XML document.
<table ID="lineitem">

<T>

 <L_ORDERKEY>1</L_ORDERKEY>

 <L_PARTKEY>1552</L_PARTKEY>
 <L_SUPPKEY>93</L_SUPPKEY>

 <L_LINENUMBER>1</L_LINENUMBER>

 <L_QUANTITY>17</L_QUANTITY>
 <L_PRICE>24710.35</L_PRICE>

</T>

</table
 For convenience purpose in the above XML only one

<T> element is shown. The path table pathtab for above XML

will consists of following entries

Pathid Path count Sequence

list

1 table/T/L_ORDERKEY 1 <1>

2 table/T/L_PARTKEY 1 <2>

3 table/T/L_SUPERKEY 1 <3>

4 table/T/L_LINENUMBER 1 <4>

5 table/T/L_QUANTITY 1 <5>

6 table/T/L_PRICE 1 <5>

 Since the path table pathtab has six entries following

six additional tables will be required to completely map the

XML document to Relational tables

Pathnum Orderkey

1 1

Pathnum Partkey

2 1552

Pathnum Superkey

3 93

Pathnum Linenumber

4 1

Pathnum Quantity

5 17

Pathnum Price

6 24710.35

http://www.ijfeat.org/

 Issue11 vol 3 (June 18) ISSN: 2321-8134

 http://www.ijfeat.org (C) International Journal For Engineering Applications and Technology, June 18 (56-59)

4. QUERYING XML DOCUMENT

The function φ() which is used to map the XML document to

Relational tables can also be used to specify a SQL or Xpath

query as explained below.

III. The function φ(PQ) (where PQ indicates a path query

containing parent-child, ancestor-descendant or mixed type of

relationship or SQL query) maps the query to a unique path in

the path summary tree which is then mapped to pathtab

returning the index value. Using the index value

corresponding data table is accessed to give the query results.

This can be represented as

φ(PQ)SI(D)DI(i)

 Consider the following xpath query

table/T/L_ORDERKEY

This query will be mapped to first row in the path table

pathtab returning an index of 1. Using this index value of 1

first table is accessed to get the result of the query.

 Now consider the following SQL query

Select L_ORDERKEY

From L_ORDERKEY

Where L_ORDERKEY>0

The names appearing in the form clause are table

names and they are obtained from the path table pathtab as

given below. Each entry in the path table is scanned. For every

row in the path table, the contents are tokenized using / or // as

the separator and the last token is obtained. This last token is

compared with the names appearing in the form clause. If

there is a match, then using the index value of the row (which

is 1 in this case) corresponding table (which is table 1 in this

case) is accessed to get the results of the given query.

5. EXPERIMENTAL RESULTS

The proposed technique for mapping XML to Relational tables

is implemented on Intel Pentium IV dual core 3.0 GHz

processor having 2 GB of DDR RAM with VB.NET running

on Windows platform. The technique requires high main

memory for data storage. This involves reading the XML

document and creating the path table and other related tables.

Query processing using the proposed technique on the other

hand requires very less main memory.

5.1 Test Data Set

XML test data sets can be broadly classified as data centric or

document centric. Data centric document are those which have

regular structure, where as document centric XML documents

have irregular structure and contains lot of textual data. Based

on the references of several XML data sets, XML documents

can be further classified as

1. XML documents with no or negligible attributes.

2. XML documents with sufficient number of attributes.

Table 1 provides the size, total number of root to leaf paths

and number of unique root to leaf paths of the above data set.

Table 1: Data set and its characteristics for the

proposed approach

5.2 Query Performance

Query performance can be measured by the query

response time. This section presents the results of execution of

different types of queries, on the test data set. Table 2-3 shows

response time and number of blocks/files transfer for different

types of xpath and SQL queries on Orders XML documents.

Table 2: Response Time for xpath on “Orders” XML

document

Sr.

No.

Document

Name

Size(MB) Number

of unique

root to

leaf paths

Total

number of

root to leaf

paths

1 Shakespeare 7.5 161 146888

2 Orders 5.12 9 135000

3 Lineitem 30.7 16 962800

4 Treebank 84 220893 132535800

5 Mondial 1.7 291 44698

6 Xmark 4.96 65 90167

7 DBLP 5.33 60 80345

Sr.N

o.

Query Time in

Milliseconds

No. of

block

transfer

1 /table@id=orders/T/O_ORDERKEY 41 2

2 /table@id=orders/T/O_CUSTKEY 29 1

3 /table@id=orders/T/O_ORDERSTATUS 24 1

4 /table@id=orders/T/O_ORDER-

PRIORITY

30 1

5 /table@id=orders/T/O_CLERK 32 1

6 //T/O_SHIP-PRIORITY 19 1

7 //T/O_COMMENT 17 1

http://www.ijfeat.org/

 Issue11 vol 3 (June 18) ISSN: 2321-8134

 http://www.ijfeat.org (C) International Journal For Engineering Applications and Technology, June 18 (56-59)

Table 3: Response Time for SQL queries on “Orders”

XML document

Sr.No. Query Time in

Milliseconds

No. of

block

transfer

1 / Select L_ORDERKEY

 From L_ORDERKEY

 Where L_ORDERKEY>0

37 2

2 Select L_PARTKEY

 From L_PARTKEY
Where L_PARTKEY >0

25 1

3 Select L_SUPPKEY
From L_SUPPKEY

Where L_SUPPKEY >0

24 1

6. CONCLUSION

 In this paper a path based mapping of XML

document to Relation database is proposed. The path based

grouping and storage of the contents of XML document used

in the proposed technique, results in reduction of the number

of block transfer and hence this technique requires minimum

query response time for xpath as well as SQL queries. The

path table in combination with other tables represents parent-

child and ancestor-descendant relationship among the nodes of

the XML document.

REFERENCES

1. Jandhyala, Sandeep, "An Automated XPATH to SQL

Transformation Methodology for XML Data." Thesis, Georgia

State University, 2006.

http://scholarworks.gsu.edu/cs_theses/21

2. Zhuyan Chan et. al, “Index Structures for Matching XML

Twigs using Relational Query Processor,” in Proc Data

engineering workshop ICDEW ,pp. 5-8 April 2005.

3. Ibrahim Dweib, Ayman Awadi and Joan Lu. “MAXDOR:

Mapping XML document into relational database,” The Open

Information System Journal., vol. 3, pp. 108-122, June 2009.

4. Igor Totarinov, Stratis D Vigals, Kevin Beyer et.al.,

“Storing and Querying Ordered XML using a Relational

Database System,” in Proc. ACM SIGMOD Int’l Conference

on Management of Data, Madison Wisconsin USA, pp. 204-

215, 2002.

7. Shankar Pal, Istvan Cseri, Oliver Seeliger, Gideon Schaller,

Leo Giakoumakis and Vasili Zolotov, “Indexing XML data

stored in a relational database,” in proc. 30th VLDB

Conference, Toronto, Canada, pp 1146-1157, 2004.

.

5. Sandeep Prakash, Sourav S Bhowmick and Sanjay Madria

,“Efficient recursive XML query processing using relational

database systems,” Data and Knowledge Engineering

Journal, vol.58 issue 3, pp 2007-242, 2006.

6. Jun-Ki Min, Chun-Hee Lee, and Chin-Wan Chung,

“XTRON: An XML data management system using relational

databases,” Information and Software Technology Journal,

vol. 50, issue 5, pp. 462-479, 2008.

http://www.ijfeat.org/

